211 research outputs found

    Annotating the human proteome

    Get PDF
    Comunicaciones a congreso

    The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999

    Get PDF
    SWISS-PROT is a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domain structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. Recent developments of the database include: cross-references to additional databases; a variety of new documentation files and improvements to TrEMBL, a computer annotated supplement to SWISS-PROT. TrEMBL consists of entries in SWISS-PROT-like format derived from the translation of all coding sequences (CDS) in the EMBL nucleotide sequence database, except the CDS already included in SWISS-PROT. The URLs for SWISS-PROT on the WWW are: http://www.expasy.ch/sprot and http://www.ebi.ac.uk/spro

    The HUPO Proteomics Standards Initiative Meeting: Towards Common Standards for Exchanging Proteomics Data

    Get PDF
    The Proteomics Standards Initiative (PSI) aims to define community standards for data representation in proteomics and to facilitate data comparison, exchange and verification. Initially the fields of proteinā€“protein interactions (PPI) and mass spectroscopy have been targeted and the inaugural meeting of the PSI addressed the questions of data storage and exchange in both of these areas. The PPI group rapidly reached consensus as to the minimum requirements for a data exchange model; an XML draft is now being produced. The mass spectroscopy group have achieved major advances in the definition of a required data model and working groups are currently taking these discussions further. A further meeting is planned in January 2003 to advance both these projects

    The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries

    Get PDF
    BACKGROUND: With the vast amounts of biomedical data being generated by high-throughput analysis methods, controlled vocabularies and ontologies are becoming increasingly important to annotate units of information for ease of search and retrieval. Each scientific community tends to create its own locally available ontology. The interfaces to query these ontologies tend to vary from group to group. We saw the need for a centralized location to perform controlled vocabulary queries that would offer both a lightweight web-accessible user interface as well as a consistent, unified SOAP interface for automated queries. RESULTS: The Ontology Lookup Service (OLS) was created to integrate publicly available biomedical ontologies into a single database. All modified ontologies are updated daily. A list of currently loaded ontologies is available online. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A programmatic interface is available to query the webservice using SOAP. The service is described by a WSDL descriptor file available online. A sample Java client to connect to the webservice using SOAP is available for download from SourceForge. All OLS source code is publicly available under the open source Apache Licence. CONCLUSION: The OLS provides a user-friendly single entry point for publicly available ontologies in the Open Biomedical Ontology (OBO) format. It can be accessed interactively or programmatically at

    The speciation of the proteome

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>In proteomics a paradox situation developed in the last years. At one side it is basic knowledge that proteins are post-translationally modified and occur in different isoforms. At the other side the protein expression concept disclaims post-translational modifications by connecting protein names directly with function.</p> <p>Discussion</p> <p>Optimal proteome coverage is today reached by bottom-up liquid chromatography/mass spectrometry. But quantification at the peptide level in shotgun or bottom-up approaches by liquid chromatography and mass spectrometry is completely ignoring that a special peptide may exist in an unmodified form and in several-fold modified forms. The acceptance of the protein species concept is a basic prerequisite for meaningful quantitative analyses in functional proteomics. In discovery approaches only top-down analyses, separating the protein species before digestion, identification and quantification by two-dimensional gel electrophoresis or protein liquid chromatography, allow the correlation between changes of a biological situation and function.</p> <p>Conclusion</p> <p>To obtain biological relevant information kinetics and systems biology have to be performed at the protein species level, which is the major challenge in proteomics today.</p

    QuickGO: a web-based tool for Gene Ontology searching

    Get PDF
    Summary: QuickGO is a web-based tool that allows easy browsing of the Gene Ontology (GO) and all associated electronic and manual GO annotations provided by the GO Consortium annotation groups QuickGO has been a popular GO browser for many years, but after a recent redevelopment it is now able to offer a greater range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation
    • ā€¦
    corecore